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Hydrodynamic interaction of drops in a linear flow of a viscous incompressible fluid is considered.
An analytical solution is suggested for the problem of two and three interacting drops. The forces
acting on the drops and the relative velocities of the latter are calculated. The shape of the surface
for two interacting drops is found. Comparison with the earlier obtained results is made.

The present work deals with the investigation of hydrodynamic interaction and deformation of drops
in the linear field of a viscous incompressible fluid flow. The problem of flow of one liquid around the liquid
particles of another one has been the focus of a large number of works. Hydrodynamic interaction of two
liquid spheres in a homogeneous flow was studied in [1]. The solution was represented in the form of a
series in a bispherical coordinate system. In [2], axial motion of a drop inside a tube was considered with
account for its interaction with the walls. In [3], a more general formulation of the problem was considered,
with one of the spheres lying inside the other. Asymmetric motion of two liquid spheres was considered in
[4]. In [3, 4], a method of numerical solution of the problem is suggested whose procedure gives a good
convergence of the series. Hydrodynamic interaction of undeformed spherical drops in a flow with a linear
velocity profile was studied in [5]. The solution was also represented as a series of special functions obtained
with the use of a bispherical coordinate system. The absence of deformation of the drops in all the cases
analyzed leads to a linear formulation of the problem. Deformation of a separate drop in homogeneous and
linear flow was considered in numerous works (see, e.g., the review [6]).

In all of the above-mentioned works, the solution of the problems concerning the hydrodynamic in-
teraction of two drops or of a drop with a tube wall was sought by the method of reflections in a bispherical
coordinate system, which in principle does not allow one to take into account deformation of drops or con-
sider interaction of three and more liquid particles. Thus, the reflection method does not give a full enough
solution of this problem. Therefore, developing a method of finding an analytical solution of this kind of
problems is of considerable interest for both different applications and an understanding of the fundamental
mechanisms that operate in disperse media with liquid particles; this is very important for investigating the
rheological behavior of highly concentrated emulsions by analytical methods.

In [7, 8], we proposed a method of analytical solution of the problem concerning hydrodynamic in-
teraction of a finite number of solid particles in flows whose velocity at infinity is represented as a polyno-
mial of any integral degree. It is shown, in particular, that the solution of the problem concerning
hydrodynamic interaction of three particles cannot be reduced in principle to a sum of solutions of the prob-
lems of paired interactions of these particles. It is obvious that a similar conclusion can also be drawn for the
interaction of liquid particles, thus confirming again the urgency of finding the method of solution of similar
problems.

In the present work, the hydrodynamic interrelationship between two drops is studied with account
for their deformation as a result of interaction both with the main flow of liquid and among themselves and
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also that of three undeformed spherical drops. It is shown that the method of [7, 8] for analytical solution of
the problem of hydrodynamic interaction of solid particles can also be applied in the case of liquid particles.

Let us consider the hydrodynamic interaction of two previously spherical drops A and B of the same
volume that corresponds to a sphere of radius d; they are placed into an infinite incompressible liquid with
viscosity η. The liquid inside each drop is incompressible and has viscosity η1. The densities of the liquids
outside and inside the drops are identical. The external forces, except for the gravity force, do not act. The
dimensions of the liquid particles are small, and the Reynolds number is smaller than unity. The liquid ve-
locity at infinity U is a linear function of the coordinates

Ui = Γij xj + Ωij xj ,

Γij = 
1

2
 




∂Ui

∂xj
 + 

∂Uj

∂xi




 ,   Ωij = 

1

2
 




∂Ui

∂xj
 − 

∂Uj

∂xi




 .

The position occupied by the point of the carrying liquid relative to the selected centers in the drops A and
B will be denoted by the vectors Xa and Xb, respectively. For them, the following relation holds:

Xb = Xa − r .

Since the Reynolds number is smaller than unity, the equations for the velocity u(x) and pressure p(x) in the
carrying liquid and for the velocity va(x) and pressure p2(x) inside the drop A are written in the Stokes ap-
proximation:

∇ u = 0 ,   ∇ va = 0 , (1)

η∇ 2u = ∇ p ,   η1∇ 2va = ∇ pa . (2)

The presence of the antisymmetric tensor Ωij in the expression for the carrying liquid velocity (1) does not
influence the distribution of pressure inside a drop and can be taken into account simply by adding the term
ΩijXaj to the expression for the velocity inside the drop va. Therefore, the boundary conditions on the surface
of the drop A can be written as follows:

(ui + Ui (A) − Vi
a + Γij Xaj) ni

a = 0 ,   Fa (Xa) = 0 ; (3)

ui + Ui (A) + Γij Xaj = Vi
a + vi

a ,   Fa (Xa) = 0 , (4)

η 



Γij + 

∂ui

∂xj
 + 

∂uj

∂xi




 nj

a τi
a = η1 





∂vi
a

∂xj
 + 

∂vj
a

∂xi




 nj

a τi
a ,   Fa (Xa) = 0 ; (5)

− p + η 



Γij + 

∂ui

∂xj
 + 

∂uj

∂xi




 nj

a ni
a = − pa + η1 





∂vi
a

∂xj
 + 

∂vj
a

∂xi




 nj

a ni
a + α (K1 + K2) ,   Fa (Xa) = 0 . (6)

Far from the drop, the perturbations decay:

ui → 0 ,    Xa  → ∞ ,   p → 0 ,    Xa  → ∞ . (7)
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Similar equations and boundary conditions can be written for the velocity vb(x) and pressure pb(x) inside the
drop B. The equation of the surface of each drop is an unknown function determined by solving the problem.
Since the shape of the surface changes with time, it would seem that nonstationary equations of a slow flow
must be taken into account. But the linear velocity of this surface has the order of the small velocity of
motion of a particle relative to the liquid, while the nonstationary terms account for the order of convective
inertia terms that are neglected. Moreover, the nonstationarity is induced because of the motion of particles
relative to one another. However, if the distance between the surfaces of the particles has the order of the
size of the particles, then one may also neglect the nonstationary terms in the equations of motion.

The method of solving the foregoing problem is similar to that suggested in [7, 8] for solid particles.
With account for the fact that the liquid is incompressible, the divergence of both sides of Eq. (2) yields the
equation for pressure:

∇ 2p = 0 .

Solving it with account for the condition at infinity (7) and substituting it into (2), we obtain the equation for
the velocity. The solution of the equations for the liquid outside drops that satisfies the condition at infinity
(7) can be written in the same form as for solid particles [8]:

p = Hi
aLi

a + Hi
bLi

b + Fij
aLij

a + Fij
bLij

b + Gijk
a Lijk

a  + Gijk
b Lijk

b  + ... , (8)

ηui = − 
2
3

 (Hi
aL0

a + Hi
bL0

b) − 
3
5

 (Fij
aLj

a + Fij
bLj

b) − 
4
7

 (Gijk
a Ljk

a  + Gijk
b Ljk

b ) − 
1
6

 (Hj
aLij

aXa
2 + Hj

bLij
bXb

2) −

− 
1
10

 (Fjk
a Lijk

a Xa
2 + Fjk

b Lijk
b Xb

2) − 
1

14
 (Gjkl

a Lijkl
a Xa

2 + Gjkl
b Lijkl

b Xb
2) − ... (9)

Here Lij...k is the multipole calculated according to the following rule:

Lij...s = 
∂

∂xi
 

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

∂
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 
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


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









 ,

where the quantity X is the distance from the center of a drop to the point in the liquid where the value for
pressure is taken. For the case of two drops, the solution must depend on the distances to the two centers.
Therefore, the expressions for pressure and velocity must contain multipoles of two types: with partial deriva-
tives of the function 1 ⁄ Xa and of the function 1 ⁄ Xb.

Inside each drop the functions for pressure and velocity must not contain singularities at Xa = 0 and
at Xb = 0. This solution can be obtained using the same procedure as that for solid particles [7, 8]. For the
drop A it is written as follows:

pa = Mi
aLi

aXa
3 + Qij

aLij
aXa

5 + Rijk
a Lijk

a Xa
7 + Dijkl

a Lijkl
a Xa

9 + ... , (10)

η1vi
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a + Ms
a 
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1
2
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1
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

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

1
2

 Lst
a Xa
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5
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 Lsti
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7


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

1
2

 Lstq
a Xa
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1
12
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a Xa

9


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+ Dstqr
a  



1
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 Lstqr
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9Xai + 
7

110
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

 + ... + Kij

aLj
aXa

3 + Nijk
a Ljk

a Xa
5 + Sijkl

a Ljkl
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7 + ... +

+ ∇ i [Tj
aLj

aXa
3 + Pjk

a Ljk
a Xa

5 + Wjkl
a Ljkl

a Xa
7 + ...] . (11)
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The second and third groups of terms in the expression for the velocity of the liquid inside a particle
are the solutions of the Laplace and continuity equations; moreover, the second group involves the conditions
for the tensor coefficients:

Njj
a = 0 ,   Sijj

a  = Sjji
a  = Sjij

a  = 0 , ...

Expressions for the velocity vb(x) and pressure pb(x) inside the drop B are written in a similar way.
Since the shape of the surface of each drop depends on the position of the drops relative to one another rj,

the distance between them d ⁄ r, the velocity of drops relative to the main flow Va − U(A), Vb − U(B), the
tensor Γij, and the surface tension coefficient α, the unknown tensor coefficients contained in the expressions
for the velocity and pressure must depend on these quantities and, in contrast to the case of spherical particles,
they must be nonlinear with respect to Va − U(A), Vb − U(B), and Γij. Using the tensors  Va − U(A),
Vb − U(B), Γij, rj, and δij, we can construct a tensor of any rank, nonlinear in Va − U(A), Vb − U(B), and Γij

and containing only the scalar function of the parameters d ⁄ r and α. Taking all possible combinations of the
tensors Va − U(A), Vb − U(B), Γij, rk, and δen that are nonlinear in the quantities Va − U(A), Vb − U(B), and
Γij, it is possible to write expressions for the unknown tensor coefficients in the expressions for the velocity
and pressure both inside and outside drops. For example, the tensor coefficient Hi

a can be represented as

Hi
a = η 




(Vi

a − Ui (A)) HA + (Vi
a − Ui (A)) (Vj

a − Uj (A)) rj HB + (Vj
a − Uj (A)) (Vj

a − Uj (A)) ri HC +

+ Γij (Vj
a − Uj (A)) HD + Γij rj EA + Γjk rj rk riEB + Γij Γjk rk FA + Γjk Γjk ri FB + ...




 .

The unknown scalar functions (EA, EB, etc.) in these expressions depend on the shape of the surface, the
liquid viscosity outside and inside drops, and the distance between their centers and surface tension and is
determined from the boundary conditions.

To calculate the unknown scalar functions contained in the tensor coefficients, we consider boundary
condition (6). Using the well-known relations for the main curvatures of the surface, we obtain the following
expression for the drop A (the sum of the main curvatures can be written similarly also for the drop B):

 K1 + K2 = − 
1

∇ Fa
 ∇  (∇ Fa) .

Assuming the surface tension coefficient to be rather high, so that the parameters ηΓd ⁄ α and ηU ⁄ α are small
(U and Γ are the absolute values of the relative velocity of particles and of the velocity gradient of the main
flow, respectively), the surface equation for the particle A will be sought in the form of the series

Fa (Xa) = Xa − d − η (Vi
a − Ui (A)) 

Xai

dα
 f1 + η (Vi

a − Ui (A)) (Vj
a − Uj (A)) 

Xai Xaj

(dα)2  f2 + ... +

+ ηΓij 
Xai Xaj

dα
 g1 + ηΓ ij Γkn Xai Xaj 

Xak Xan

(dα)2  g2 + ... + η (Vi
a − Ui (A)) Γjk Xai Xaj 

Xak

(dα)2 h1 + ... + ... (12)

Here f, g, and h with the corresponding subscripts denote the scalar functions that depend on the parameter
d ⁄ r. For small values of the parameter ε = d ⁄ r, calculations of the unknown scalar functions in the expres-
sions for the velocity and pressure are similar to those for the case of solid particles [8] with the only differ-
ence being that the number of unknowns increases considerably, and this leads to the familiar mathematical
differences. Calculations can be made with any accuracy using small parameters. The results of the calcula-
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tions of scalar functions for the linear quantities that are linear in velocity and velocity gradient are given
below.

Substituting the expressions for the liquid velocity outside u (9) and inside va (11) the drop A, with
account for the form of the tensor coefficients in them, into boundary conditions (3)−(5) and assuming that
the order of the quantities ηΓd ⁄ α and ηU ⁄ α is the same, we obtain the values for the unknown functions in
the form of a series in the parameter ε. For interacting spherical drops in a homogeneous flow, we obtain the
well-known solution of Hadamard−Rybchinskii (the case ε = 0 and ηU ⁄ α = 0) in the notation introduced
above. It has the form

ηui = − 
2
3

 Hi
aL0

a − 
1
6

 Hj
aLij

aXa
2 − 

4
7

 Gijk
a Ljk

a  ,   η1vi
a = 

1
2

 Mk
aLk

aXa
3Xai + 

1
5

 Mj
aLij

aXa
5 + Ei

a ,

Hi
a = η (Vi

a − Ui (A)) H ,   Gijk
a  = η [(Vi

a − Ui (A)) δjk + (Vj
a − Uj (A)) δik + (Vk

a − Uk (A)) δji] G ,

Ei
a = η1 (Vi

a − Ui (A)) Ea ,   Mi
a = η1 (Vi

a − Ui (A)) Ma .

The values of the coefficients are

H = 
d

2
 λ ,   G = − 

7d3

32
 ν ,   Ma = − 

5

d2 ν ,   Ea = − 
ν
2

 ,   λ = 
3η1 + 2η
η1 + η

 ,   ν = 
η

η1 + η
 .

For moving drops it is necessary to take into account the fact that both the shape of the particles and
their linear velocity relative to the liquid change. Moreover, just as for solid particles, it is necessary to take
into account separately changes in the linear velocity both along the vector r and normal to it. This means
that in constructing tensor coefficients one should take combinations not with the linear velocity of drops but
with its components. The values of these velocities are calculated from the condition of the equality to zero
of the forces that act on each particle with account for the deformation of its surface. In the present work,
calculations were performed up to the value of the order of ε3 (on the assumption that the order of the quan-
tities ηΓd ⁄ d and ηU ⁄ α is much smaller than that of ε3). The results obtained coincide in the limit
ηΓd ⁄ α → 0 with the calculations of [5] for undeformed spherical liquid particles.

With account for the dependence of the drop velocity Va − U(A) on the gradient of the velocity of the
main flow Γij, the equation of the surface of the drop A (12) can be represented in the form

Xa = d + Φ1 
η
α

 Γjk rj rk (rl Xal) + Φ2 
η
α

 Γjk rj rk + Φ3 
η
α

 Γjk Xaj Xak + Φ4 
η
α

 Γjk rj Xak (rl Xal) + 

+ Φ5 
η
α

 Γjk rj Xak (rl Xal)
2 + Ψ1 

η1

α
 Γjk rj rk (rl Xal) + Ψ2 

η1

α
 Γjk rj rk + Ψ3 

η1

α
 Γjk Xaj Xak +

+ Ψ4 
η1

α
 Γjk rj Xak (rl Xal) + Ψ5 

η1

α
 Γjk rj Xak (rl Xal)

2 . (13)

Substituting this expression into boundary condition (6) with account for the pressure and velocity
outside, (8)−(9), and inside, (10)−(11), a drop and the found values for the tensor coefficients in them, we
obtain the following values of the parameters:

Φ1 = 
3

4r2 µε3 

1 + 

1

2
 λε + 

1

4
 λ2ε2



 ,   Ψ1 = 2νΦ1 ,   Φ3 = − 2ν ,   Ψ3 = 19ν ,  Φ4 = 

5

r2 µκε3 ,

754



Ψ4 = 0 ,   Φ5 = − 
79

6r4 µξε3 ,   Ψ5 = − 
Φ5

4
 ,   µ = 

5η1 + 2η

η1 + η
 ,   κ = 

η

5η1 + 8η
 ,   ξ = 

η

5η1 + 4η
 .

The found values of the coefficients correspond to the deformation of the drop A. Similar calculations can be
easily made for the drop B. If the beginning of reckoning of the coordinate system is placed at the center of
the drop B, then, taking into account that the vector r will reverse its direction, we obtain the same values of
the coefficients in the expression for the shape of the surface but opposite signs before the terms that contain
the odd degrees of the components of the vector r. Figure 1 shows the shapes of main cross sections of the
surfaces of the drops A and B for linear flow of simple shear (only the components Γ12 = Γ21 in the tensor
Γij differ from zero) for the relative position of their centers corresponding to the vector r = (−r√2  ⁄ 2,
r√2  ⁄ 2, 0). It is seen from the calculations that at large distances between the drops and small parameters
ηU ⁄ α and ηΓd ⁄ α the shape of the drops is close to an ellipsoidal one. With decrease in the distance between
drops, the shape of the surface becomes lens-like.

The determined distributions of the pressure and velocity make it possible to calculate the forces act-
ing from the side of the liquid on the drops. In the approximation considered, the drop A experiences the
action of the force F equal to 

Fi = dπηλ 



Γij rj 

σ
λ

 ε5 + µΓjk rj rk ri 



ε3 + 

λ
2

 ε4


 − Ui

aN 

2 + λ 

3
2

 ε2


 + Ui

bN λε − Ui
aM 


2 + 

3
8

 λε2


 + Ui

bM 
λε
2




 . (14)

Fig. 1. Deformation of the drops A and B: I) d ⁄ r = 0.03; II) 0.1; III) 0.3.
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Here σ = 8η1(η + 2η1)/(η + η1)2, Ui
aN, Ui

aM, Ui
bN,  and Ui

bM are the components of the vectors
Va − U(A) and Vb − U(B) along the vector r and normal to it, respectively. The force acting on the drop B is
obtained from expression (14) by interchanging the superscripts a and b and replacing the vector r by −r. The
expressions obtained for the forces were used in finding the dependence of the velocity of drops Va − U(A)
and Vb − U(B) on the gradient of the velocity of the main flow Γij in equality (13) for the deformation of the
surface of the drop A and in a similar equality for the drop B. This dependence follows from the requirement
that the forces acting on each drop be equal to zero. This very condition for forces yields expressions for the
velocity of the drop B relative to the drop A:

Vi
b − Vi

a = Ωij rj + Γij rj (1 − J) + Γjk 
rj rk ri

r2  (J − I)

with the coefficients

I = µε3 − 
3σ
2λ

 ε5 ,   J = 
σ
λ

 ε5 .

The values of the coefficients I and J coincide with the similar coefficients of [5].
The method used in the present work allows one, just as in the case of solid particles [8], to consider

the interaction of n drops in the flows whose velocity at infinity is represented as a polynomial of integral
degree in the coordinates. We consider the interaction of three drops A, B, and C. The distribution of the
pressure and velocity inside the drops is sought in the same form as for the two, and outside the drops it is
sought in the same form as for three solid particles [8]:

p = Hi
a Li

a + Hi
c Li

c + Hi
b Li

b + Fij
a Lij

a + Fij
c Lij

c + Fij
b Lij

b + ... ,

ηui = − 
2
3

 Hi
a L0

a − 
3
5

 Fij
a Lj

a − 
2
3

 Hi
c L0

c − 
3
5

 Fij
c Lj

c − 
2
3

 Hi
b L0

b − 
3
5

 Fij
b Lj

b − ... .

The tensor quantities in the expressions for the velocity and pressure outside and inside the drops are repre-
sented in the form of the same combinations of the corresponding tensors as in the problem of two drops
with the only difference being that the number of possible combinations increases. This is because the rela-
tive position of the centers of the three spheres is determined by assigning not one of the radius-vectors, as
for two spheres, but two radius-vectors. As these vectors we may select any two radii-vectors out of the three
that connect the centers. Correspondingly, for the problem of interaction of four or more drops it is necessary
to use any three radii-vectors, not lying in one plane, in order to prescribe their position. The number of
possible combinations for tensor quantities here increases. Correspondingly, there is an increase in the number
of scalar functions entering into these combinations and the number of algebraic equations needed for their
determination. This presents the main difficulty in the method of solving the problem of hydrodynamic inter-
action of three or more drops. In the present work, the solution of the problem of hydrodynamic interaction
of three spheres of the same radius has been found with an accuracy of up to the third order of smallness in
the parameter ε. Just as for solid particles, it is impossible to separate the contribution of the interactions, for
example, of the liquid particles B and C with the particle A. We can only calculate the total contribution of
the interaction of the particle A with the other two. This is explained by the fact that it is impossible to
separate the contribution of each particle to the boundary conditions. However, knowledge of the total result
of the interaction is quite sufficient for calculation of the forces and moments acting on each liquid particle
from the side of two other. Thus, for the particle A we obtain the following expression for the force acting
from the side of the liquid as a result of the interaction with the other two:
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Here, the vectors ra, rc, and rb denote the radii-vectors between the drops A and B, A and C, and B and C,
respectively, and the unit vectors ea = ra

 ⁄ ra, eb = rb
 ⁄ rb, and ec = rc

 ⁄ rc are introduced. The vector UM denotes
the velocity component perpendicular to the plane in which the drops are located. The expressions for the
forces acting on the drops B and C are calculated analogously. Being cumbersome, they are not given here.
Comparison of expressions (14) and (15) shows that the force acting on the drop in the case of three inter-
acting liquid particles is not reduced to the sum of the forces acting in paired interactions.
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NOTATION

d, radius of a spherical drop; na and τa, unit vectors of the normal and tangent to the surface of the
drop A as assigned by the equation Fa(Xa) = 0; α, surface tension coefficient; K1 + K2, the sum of the main
curvatures of the surface of the drop A; U(A), velocity of the nonperturbed flow of liquid at the center of the
drop A; U(B), same at the center of the drop B; η1, viscosity of liquid in a drop; η, viscosity of the carrying
liquid; pa, pressure in the drop A; pb, same in the drop B; va, velocity of liquid in the drop A; vb, same in the
drop B; Va, velocity of the center of mass of the drop A as a whole; Vb, same of the drop B; p, pressure in
the carrying liquid; u, velocity of the carrying liquid; Γij and Ωij, symmetric and antisymmetric velocity ten-
sors; xi, coordinates of the point of liquid; r, vector that connects the centers of the particles; r, absolute
value of the vector r; F, the force acting on the drop A; Hi

a, Fij
a, Gijk

a , Hi
b, Fij

b, Hi
c, and Fij

a, tensor coefficients
for the velocity and pressure in the carrying liquid; Mi

a, Qij
a, Rijk

a , Dijkl
a , Kij

a, Nijk
a , Sijkl

a , Tij
a, Pij

a, and Wijk
a , same in

the drop A; HA, HB, HC, HD, EA, EB, FA, FB, scalar coefficients determined from boundary conditions;
Lij...s

a ., multipole of the function 1 ⁄ Xa; Lij...s
b , same of the function 1 ⁄ Xc; Xa, the distance from the point in the

liquid to the center of the drop A; Xb, same to the center of the drop B; Xc, same to the center of the drop C;
Xai, coordinates of the vector Xa; λ, µ, ν, κ, ξ, and σ, parameters that characterize the interaction of a drop
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with the flow; Φ1, Φ2, Φ3, Φ4, Φ5, Ψ1, Ψ2, Ψ3, Ψ4, and Ψ5, coefficients in the expression for the shape of
the surface of the drop A; Ua, Ub, and Uc, relative velocities of the drops A, B, and C, respectively; UaN,
UaM, UbN,UbM, velocities of the drops A and B along the vector r and normal to it; ra, rc, and rb, radii-vec-
tors between the drops A and B, A and C, and B and C, respectively; ea, eb, ec, unit vectors along the vectors
ra, rb, and rc. The subscripts i, j, k, ..., s denote the components of vectors and tensors.
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